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Hybrid Prognostics for Predictive Maintenance 
Luc Keizers – PhD candidate at University of Twente 
Prognostics are essential to fully benefit from predictive maintenance. Because purely physics-based and data-

driven prognostic models both have their benefits and limitations, a hybrid approach is proposed to combine 

their strengths and alleviate their limitations. Bayesian filtering is the main algorithm applied in this research. It 

is used to update physics-based degradation models with real-time degradation measurements. Special attention 

in this research is given to assets in varying usage conditions. The algorithm is successfully applied to a case study 

on simulated crack propagation and to a case study on atmospheric corrosion based on real data. It was shown 

that the algorithm yields perfect prognostics when the degradation process and loads could be described well. If 

they only could be described to a limited extent the results were still acceptable, but more prone to varying usage 

conditions. Although good performance was shown in the case studies, a challenge remains to apply the algorithm 

when no direct degradation measurements are available. 

Introduction 
Predictive maintenance reduces unexpected down-time, 

prevents replacement of healthy components, and 

enables efficient and effective maintenance logistics 

[1]. Although the term predictive maintenance also 

encompasses anomaly detection and diagnostic 

algorithms, those algorithms are not sufficient to 

achieve optimal maintenance planning. For example, 

logistic issues such as spare part deliveries, maintenance 

clustering and workplace availability require a forecast. 

Furthermore, prognostics may give insight in the way 

usage can be altered to extend lifetime of components. 

Prognostic approaches can be classified as physics-

based, data-driven or hybrid [2]. Physics-based 

approaches use physics-of-failure to predict the 

remaining useful life (RUL). This enables accurate 

prognostics based on expected future usage. However, 

in practical applications it is extremely complex to 

obtain a representative degradation model and relevant 

loads. Data-driven approaches use historical failure data 

to predict the RUL. They relieve the requirement of 

complex physics-based models but require sufficient 

representative historical failure data to train the models. 

These data are often unavailable, especially when 

historical usage is not representative for future usage of 

an asset. As purely physics-based or data-driven 

approaches are not ideal, hybrid approa-ches help to 

alleviate limitations and use the benefits of both 

physics-based and data-driven approaches.  

Figure 1: A simplified representation of the prognostic 

approach using a Bayesian filter. 
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Methods and Approach 
The hybrid approach used in this research is based on 

Bayesian filtering. A simplified representation of the 

algorithm is shown in Figure 1. The algorithm predicts 

the RUL with a physics-based degradation model and 

updates the model with real-time condition 

measurements of the degradation process. This 

approach does not require large historical data sets and 

makes predictions independent of historical usage. 

Real-time updating improves accuracy of the 

degradation model or compensates for missing physics 

in the model when the physics can only be described to 

a limited extent. Bayesian filters used in this research 

are the Unscented Kalman Filter [3] and the Particle 

Filter [4]. 

The application of these types of filters is not new in the 

(theoretical) field of prognostics and the number of 

adaptations to the basic algorithms is large [5]. Still, 

practical applications are lacking, and therefore the 

focus of this research project is on the application of 

Bayesian filtering in practical applications with varying 

usage conditions. During the research, a three-step 

approach is taken, increasing in complexity:  

1. Application to simulated data with direct condition 

measurements (Unscented Kalman Filtering for 

crack propagation [6]).  

2. Application to real data with direct condition 

measurements (Particle Filtering for corrosion 

prognostics [7]). 

3. Application to real data with indirect condition 

measurements (future work). 

Results of the first two steps are given in the following 

section. 

Results 
In the first case study [6], a crack propagation problem 

was simulated by the Paris-Erdogan equation. Crack 

lengths were assumed to be measured and four scenarios 

regarding availability of load measurements are 

compared. An example of a prediction of future crack 

growth for the scenario where loads are assumed to be 

measured and future loads are assumed to be known is 

shown in Figure 2. This figure shows that the prediction 

(green line) converges very well to the actual crack 

growth process (blue line), yielding very accurate 

prognostics. When loads were assumed not to be 

measured, the filter adapted to its current operating 

conditions such that prognostics could only be 

performed when loading profiles remain (quite) 

constant. 

In the second case study [7], mass loss measurements of 

an atmospheric corrosion process from experiments 

performed by NIMS [8] were used to create a continuous 

corrosion process. Because the physics of corrosion are 

extremely complex, it is practically impossible to 

generate an accurate physics-based model [9]. 

Therefore, a simplified corrosion model that uses only 

temperature as input parameter is used to predict 

atmospheric corrosion, and a particle filter compensates 

Figure 2: Unscented Kalman Filter for crack propagation [6]. 
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for the missing physics. An example of a prediction for 

future mass loss is shown in Figure 3, which shows that 

the particle filter learned the clear seasonal effect on the 

corrosion process and can predict future corrosion quite 

accurately. 

Conclusion and Future Work 
Bayesian filtering has shown to be a valuable tool for 

prognostics because of its ability to either optimize the 

degradation models, or compensate for missing physics 

of the degradation models. However, in the discussed 

cases direct condition measurements were available and 

relevant loads could be estimated. In many practical 

applications only indirect condition measurements are 

available, such as vibrations, acoustic emission or 

temperatures. This complicates prognostics because the 

link between data and a degradation model is unclear, 

and failure thresholds are hard to define. The main focus 

of future work is on the link between indirect and direct 

condition measurements. 
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Figure 3: Particle Filter on atmospheric corrosion [7]. 


