Comparing unsupervised anomaly detection algorithms

Roel Bouman

ANOMALY DETECTION IN PREDICTIVE MAINTENANCE

- One of the first steps in setting up predictive maintenance is the detection of failures in historical data
- Historical data is in practice often of low quality
 - Logs are incomplete
 - Timestamps are off by minutes, hours or days
 - No good "labelling" of data exist (exact moments of failure)
- Additionally, not everything you'd want to detect is present in historical data (rare events)
- Often, we have to resort to Anomaly Detection to detect faults or failures in the absence of labels
- Knowing exactly when faults or failures happen allows for further investigation/modelling

ANOMALY DETECTION ALGORITHMS: SEEING THE FOREST FOR THE TREES

COMPARING UNSUPERVISED ANOMALY DETECTION ALGORITHMS

- For supervised classification, large scale comparison studies have been performed (Fernández-Delgado and Amorim)
- Yet, for unsupervised anomaly detection, fairly little comparitive research has been done
 - Goldstein and Uchida 2016 (19 algorithms, 10 datasets, no statistical comparison)
 - Campos et al. 2016 (12 algorithms, 11 datasets)
- Our study: 26 algorithms on 38 real-world tabular datasets (currently)
 - Use Imam-Davenport to check for presence of significant differences
 - Nemenyi-Friedman for pairwise testing

COMPARING OVERALL PERFORMANCE

COMPARING OVERALL PERFORMANCE

	BLOF	NIC	OF	OF	ODA	nsemble-LOF	OD	MDD	CA	fean
PUP	0	0	0	L	Г	e	S	L	Ч	24
EIF	++	++	++	++	++	++	++	++	++	0.798
kth-NN	++	++	++	++	++	++	++	++	++	0.787
IF	++	++	++	++	++		++			0.787
kNN	++	++	++	++	++	++	++	+	+	0.782
MCD	++	++	++	++	+					0.779
INNE	++	++	$^{++}$	++	+					0.778
KDE	++	++	++	++	++		++			0.764
u-CBLOF	++	++	++							0.763
ABOD	++	++	$^{++}$	+						0.758
COPOD	++	++	++							0.754
OCSVM	++	++	$^{++}$							0.745
AE	++	++								0.744
beta-VAE	++									0.732
ECOD	++	+								0.732
HBOS	++	+								0.731
VAE	++									0.725
PCA	+									0.723
LMDD	+									0.706
GMM	++									0.698
SOD										0.694
ensemble-LOF	+									0.688
LODA										0.684
LOF										0.652
COF										0.612
ODIN										0.605
CBLOF									-	0.532

TWO-WAY CLUSTERING OF ALGORITHMS AND DATASETS

PROPERTIES OF ANOMALIES: LOCAL AND GLOBAL DENSITY ANOMALIES

REPEATING THE COMPARISON FOR GLOBAL PROBLEMS (29 DATASETS)

	CBLOF	COF	ODIN	LOF	ensemble-LOF	SOD	GMM	LODA	Mean AUC
FIF	++	++	++	++	++	++	++	++	0.844
IF	++	++	++	++	++	++	++	++	0.833
COPOD	++	++	++	++	++	++			0.819
INNE	++	++	++	++	++	++			0.811
AE	++	++	++	++	++	++			0.804
beta-VAE	++	++	++	++	+	++			0.802
ECOD	++	++	++	++	++	++			0.801
OCSVM	++	++	++	++	++	++			0.801
PCA	++	++	++	++					0.800
kth-NN	++	++	++	++	++	++			0.794
u-CBLOF	++	++	++	++	+	++			0.793
MCD	++	++	++	++	++	++			0.792
kNN	++	++	++	++	++	++			0.781
HBOS	++	++	++	++	+	++			0.778
VAE	++	++	++	++					0.772
KDE	++	++	++	++	++	++			0.770
LMDD	++	++	++	++					0.767
ABOD	++	++	++	++					0.753
LODA									0.736
GMM		+							0.680
SOD									0.673
ensemble-LOF									0.659
LOF									0.610
ODIN									0.566
COF							-		0.556
CBLOF									0.508

Radboud University

REPEATING THE COMPARISON FOR LOCAL PROBLEMS (9 DATASETS)

CONCLUSION

- We've found a subset of algorithms which work well on various types of anomalies:
 - kNN works well on the entire collection of datasets, as well as on both local and global anomalies
 - Extended Isolation Forest works best on global anomalies
 - KNN works best on local anomalies
- The current benchmark datasets require more analysis to study which properties the contained anomalies have

FUTURE WORK

- Extending the benchmark and keeping it up-to-date
- There are no tests to see what properties the anomalies within a certain dataset have
- Look further into different properties of algorithms:
 - Multidimensional vs. Unidimensional
 - Enclosed vs. Peripheral
 - Isolated vs. Clustered
- Look into hyperparameter/initialisation stability

